The Incredible Rainbow Spitting Chicken: Teaching Traditional
Programming SKkills Through Games Programming

Patricia Haden

School of Information Technology and Electrotechnology
Otago Polytechnic
Dunedin, New Zealand

phaden@tekotago.ac.nz

Abstract

Introductory programming courses must provide sound
instruction in basic programming skills while still
maintaining a high level of student engagement. At Otago
Polytechnic we have recently introduced a second year
programming course that teaches traditional core topics in
the context of “games programming”. While building a
variety of computer game applications, students study
algorithm design, complex data structures, recursion and
class architecture. Early experiences with the course have
shown it to be both effective and enjoyable. In this paper
we present the rationale and structure of the course, and
describe some of the course materials.

1 Introduction

Computer programming has always been a challenge to
teach successfully. Since “CS101” became a common
part of the undergraduate curriculum, educators have
struggled to understand why students generally have such
difficulty learning to be good programmers (Decker &
Hirshfield, 1993; McCracken et. al., 2001; Garner et. al.,
2005).

At Otago Polytechnic, we have trialled a number of
teaching methodologies and have found that, beyond
natural aptitude (over which we have no control), the
factor that seems to best predict student success in
introductory — programming is mastery of core
programming principles (Haden & Gasson, 2004). This
pattern has also been observed by Duke, et. al. (2000). If
a student can be given a deep understanding of the
principles of basic data manipulation and flow of control,

advanced programming esoterica seem to follow
naturally.
The inherent difficulty in drilling students in

programming basics is that it can be deadly boring. Using
if-statements and for-loops to print assorted series of
numbers rapidly loses its appeal. Many educators have
observed that students who are not engaged in course

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Tasmania, Australia, January
2006. Conferences in Research in Practice in Information
Technology, Vol. 52. Denise Tolhurst and Samuel Mann Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

material are students who probably will not learn (e.g.
Kearsley & Shneiderman, 1999; Loblo, et. al. 2000).

The problem of maintaining student engagement is
becoming increasingly acute because our incoming
students are often members of the “Nintendo Generation”
(Guzdial & Soloway, 2000). This group, now entering
their late teens, have expectations of how a computer
should behave that are based on the World Wide Web,
with its elaborate graphical elements, and PC and
Platform games, with their rich Al and fast-paced
interactivity (cf. Phelps, Bierre & Parks, 2003). Sending
“Hello World” to the console is simply not adequate for
this population.

We have recently introduced an early programming
course that follows the “if you can’t beat them, join
them” philosophy. Our students are computer game
players, so we have decided to teach them programming
in the context of building computer games. To this end,
we now offer a second year C++ programming paper
titled Interactive Worlds: Introduction to Games
Programming. We are able to embed all the traditional
core programming topics — data structures, flow of
control, class architecture, algorithm development — into
the design and creation of simple computer games. The
course structure also allows some discussion of principles
of human-computer interface, a dash of trigonometry, and
even an opportunity to consider the social implications of
computers in our lives. The students see themselves
creating computer games, which is something they’ve
long wanted to do. But in the process, they are reading
and writing huge amounts of code, and gaining a firm
grounding in the principles they need to become quality
programmers.

The success of the first two offerings of the games
programming course (in 2004, and currently running in
2005) has been notable. While we have as yet made no
attempt to precisely quantify programming skill (see
Fincher et. al., 2005, for a discussion of the difficulties in
this task), good progress in coding facility has been clear
for all students in both years. In some cases, this progress
has been dramatic. We have been able to observe directly
the perfect attendance, unflagging enthusiasm and
willingly committed out-of-class work hours of the
course participants. We were also able to observe the very
polished games produced by students in the first offering
of the course, and the strong programming skills those
students brought into their final year of study. Informal
code inspection and student feedback (see below) are also
extremely positive.

In this paper, we will first discuss the role of games
programming in the traditional CS curriculum, and the
views of other educators employing this approach. We
will then describe the structure of the Interactive Worlds
course and present some of the curricular materials used.
Finally, we will consider the extent to which Interactive
Worlds has been an effective vehicle for improving our
students’ programming abilities.

2 Games Programming in the CS Curriculum

As the games industry becomes increasingly profitable, a
number of CS institutions have introduced some form of
Games Programming into their traditional CS curriculum.
These courses fall into two broad classes: those intended
to prepare students for employment in the games industry
(e.g. Parberry, Roden, & Kazemzadeh, M, 2005;
Coleman, Krembs, Labouseur, Weir, 2005), and those
which, like our course, see games programming as
primarily a vehicle for teaching programming skills in a
highly motivating, yet pedagogically robust way.

It is generally accepted in the literature that a
programming assignment that involves building a real
application is more appropriate than one that involves an
isolated and unrealistic processing task (e.g. Huang,
2001). Further, for the majority of students, building a
computer game is simply more fun than implementing,
for example, a mock bank account or billing system
(Ross, 2002; Valentine, 2005; Curtis, 2005). As Becker
(2001) points out when discussing her experiences using
games programming in a first year programming course:
“While having fun is not typically high on the list of
teaching goals, its value should not be underestimated.
Students who are having fun work harder, longer, and are
more apt to expand on what is taught than those who
simply wish to get it over with and pass the course.”
Thus by using computer games as programming tasks,
one achieves both real world relevance and personal
engagement.

Fortunately, this can be done without sacrificing
pedagogical appropriateness. Computer games are
nontrivial programming entities, which involve many
topics from the traditional CS curriculum. These include,
but are not limited to: syntax, flow of control, data
structures, event-driven programming, human-computer
interface design, artificial intelligence, physical
simulation, graphics and animation, multimedia design
and algorithm design (cf. de Laet, Slattery, Kuffner, &
Sweedyk, 2005). Pleva (2004) notes the extensive overlap
between principles that can be illustrated via games
programming and the ACM recommended guidelines for
computer science (ACM, 2005). Additionally, if a games
programming course incorporates large projects and
group work, students can gain experience in the entire
software development process (Jones, 2000).

Not surprisingly, given the potential technical complexity
of a complete computer game, many of the courses
currently being described in the literature are targeted at
senior students (e.g. Jones, 2000; Huang, 2001). Our
games programming course is intended for less
experienced programmers. Our students generally have

only two previous semesters of programming experience
— one procedural, and one object-oriented — both taught in
Pascal. One great advantage of games as a programming
context is that they range naturally in complexity from
very simple to nearly unmanageable. We have found that
with careful selection of the games to be implemented,
and careful coding support where required (see Sections
3 and 4 below) even relatively novice programmers can
build working games of which they can be proud.

A particular benefit for our inexperienced programmers is
the natural relationship between games and the object-
oriented programming paradigm. Prior to entering the
Interactive Worlds course, the majority of our students
will have had only 12 weeks of instruction in OO design
and implementation. Many of them are still struggling
with concepts like class architecture, method assignment,
inheritance and polymorphism. Many are still not
confident of the correct syntax for instantiating objects
and writing and calling class methods. Fortunately, it is
often especially easy to conceptualise a game in terms of
interacting objects, which are then easy to map to an OO
architecture (Leska & Rabung, 2005). Our student
feedback (see below) indicates that from a student
perspective, one of the great benefits of the games
programming approach is the extent to which it helps
clarify object-oriented theory.

3 Programming Environment

The high graphical load of the modern computer game is
both a great advantage, and a great challenge. Giguette
(2003) notes that: “...though students have no trouble
playing games, they often have trouble programming
them. Implementing realistic details, flexible user
interfaces, or interesting graphics is beyond the
capabilities of many CS1/CS2 students.” He suggests that
graphical complexity must be sacrificed by using, for
example, text-based outputs rather than graphical ones.
We agree that the Windows API, OpenGL and Direct X
are probably beyond the reach of novice programmers.
However, we have found that with the right programming
environment, students with even fairly rudimentary
programming skills can produce software that is
graphically impressive and supports complex user
interactivity. In the Interactive Worlds course, all
development is done in C++ using Borland’s C++ Builder
IDE (Borland, 2005). This tool comprises a robust C++
compiler and a “point-and-click” screen painter. Students
drop buttons, menus, text boxes, timers and a variety of
other built-in components onto a blank form, and then
write the code for underlying event handlers such as
button click, mouse down, text change, etc. C++ Builder
provides a number of powerful graphics classes and
components that allow students to produce quite
impressive graphics and animations using a set of simple
method calls.” If our goal in the course was to produce
professional games programmers, we would be obligated

2 The Borland IDE is, in fact, so simple to use that we have
successfully employed the Object Pascal version (Borland
Delphi) in our first-year programming classes for several years.
See Haden & Mann (2003) for details.

to expose students to the more complex tools used in the
games programming industry. However, our goal is to
provide an educationally sound and motivating
programming class, which is best achieved by using an
empowering development environment.

4 Course Curriculum

Interactive Worlds is a 17-week course with one lecture
and two practical sessions each week. The lecture series
concentrates on theoretical issues in game design and
construction, while the practical sessions focus on
programming and, to a small extent, comparative analysis
of existing game software.

We have chosen to follow the incremental development
model of Parberry (Parberry, 2001, Parberry, 2002;
Parberry, Roden, & Kazemzadeh, M 2005). In this
approach, course tasks form a series, with each building
upon code developed in previous exercises. At each step,
the student is introduced to new practical and theoretical
topics. At the end of the series of tasks, students have a
number of code modules or classes that they can then use
in larger projects. For example, the series of
programming tasks our students do in the first seven
weeks of the course produce a complete set of classes for
implementation and management of animated 2D sprites.
Students then use these classes when building their main
course project, a 2D side-scroller game.

In 2D side-scrollers, the user controls a main character,
which can be steered through a 2D world. The appearance
of movement is achieved by scrolling the game
background from side to side behind the character —
hence the name “side-scroller”. Traditionally, the player
character encounters other game entities, both helpful and
harmful. Well-known examples include Charlie The
Duck (www.wieringsoftware.nl), the early Mario games
(www.nintendo.com) and the original Duke Nukem
(www.3drealms.com). The 2D side-scroller was an
extremely active genre in the early days of graphical
computer game development. These games can be
implemented quite simply, with stick-figure graphics and
single axis movement. Alternatively, they can incorporate
elaborate artwork, realistic physics and an emotive back-
story. (See Bud Redhead: The Time Chase (www.space-
ewe.com) for an example of a 2D side-scroller that
compares favourably to many modern computer games.)
As a student project, the side-scroller thus provides a
wide range of options, allowing the more adventurous
students to extend themselves, while still being tractable
for less confident programmers. The games produced by
students in the first offering of Interactive Worlds are
discussed in more detail in Section 6 below.

The general course plan is shown in Table 1.

Week Lecture Practical 1 | Practical 2
1 Games History | C++ vs File hierarchy
and Genres Pascal
Game Play — The Game | Linked Lists
2 It’s Not About | Event
The Graphics Cycle
3 Playability Project 1 - | Project 1 -
Tetris Tetris
4 Process and Platform Design
Documentation | Games Document
User Interface | Screens, Coding —
5 in Games Controls Icon Design
and Sound
2D Artwork Simple Directional
6 And Sprite Sprite Sprite
Animation Animation | Animation
2D Simple Scrolling Tile
7 Background Tile Map Map
Animation
3 Graphics 3: 3D | GMAX - 3D
Graphics — 3D Objects | Environments
9 Collision Physics Frogger
Detection Algorithms
10 Trajectories Simple Frogger
and Gravity Cannon
All-FSM Approach- | Sim Swamp
11 .
Avoidance
Al2 - Maze Gen | Maze Gen
12 Complex and Solve | and Solve
Behaviours
13 Engines and Engines 1 Engines 2
Mods
Enhancing The | Good Project
14 Experience Sound, Checkpoint:
With Sound Bad Sound
Windows Windows Windows and
15 Programming and DirectX Part
and DirectX DirectX 1 |2
16 Games and Project Project Work
Society Work
Theory Exam Project Project Work
17
Work

Table 1: Course Curriculum

5 Course Materials

Each of the practical coding exercises serves to
demonstrate some basic computing principles. In this
section, we will describe a selection of these tasks.

5.1 Linked Lists with the Incredible Rainbow
Spitting Chicken

During their first year of programming instruction, our
students will have had only minimal experience with
complex data structures, via arrays and records. In their
second year of programming, they need to be introduced
to more advanced examples. We use the Incredible
Rainbow Spitting Chicken task to teach students to
understand and build a linked list object. In this task,
students build a small graphical application in which a

chicken® (implemented as a primitive image object) can
be moved back and forth across the bottom of the screen.
When the spacebar is pressed, the chicken “spits” a
randomly coloured circle. The circles travel up the screen,
and are destroyed when they reach the top of the screen.
A screenshot is shown in Figure 1. The coloured circles
are managed via a standard linked list object with
standard methods Create, AddNode, DeleteNode and
CountNode.

Figure 1: The Incredible Rainbow Spitting Chicken

In this practical, students are first given a short lecture on
the logic of linked lists and their operations. Then the
Incredible Spitting Chicken task is described. We
comment on the fact that because the coloured circles are
being created and destroyed dynamically in response to
user input, it is not convenient to allow at design time for
a fixed number of circles. Thus the familiar static array is
not an appropriate data structure for this application.
Students can see that a linked list, with dynamic addition
and deletion of elements, is more efficient.

As this is a very early programming task, students are
given a “code skeleton” in which some of the code
structure is provided, and they are required to fill in the
missing bits. This code skeleton technique is used
throughout the course. As the course proceeds, the code
skeletons become increasingly sparse until, at the end of
the course, students are generating all their own code.

To date, 100% of students have been able to correctly
implement the incredible spitting chicken. The resultant
application, though technically very simple, is interactive,
attractive to look at, and fun to play with. We believe the
task is more motivating and engaging than traditional
linked-list exercises such as reading in a file of text
records and putting them in a linked list, yet still gives
students a good first exposure to the theory and practice
of complex data structures.

* Many of the graphic images used in the Interactive Worlds
course are obtained from a wonderful collection of royalty-free
graphics available at www.reinerstileset.4players.de:1059. We
wish to express our appreciation to the generous creator of this
remarkable resource.

5.2 Class Design, Inheritance and

Polymorphism with Tetris

The first substantial coding project in Interactive Worlds
is an implementation of the classic arcade game Tetris,
invented by Alexey Pazhitnov. In Tetris a series of shapes
fall from the top of the game screen. Each shape is
composed of four connected squares. The user shifts and
rotates the shapes as they fall in an attempt to fill
complete rows at the base of the game screen.

Because of the nature of the block shapes in Tetris, it is
an especially nice illustration of inheritance and
polymorphism in OO design. The seven Tetris blocks
comprise the seven possible combinations of four
adjacent squares as shown in Figure 2.

JET %L

Figure 2: The Seven Tetris Blocks

The blocks can be implemented as a set of four squares
with known locations in a grid. Each of the seven block
types must have methods to shift left, shift right and shift
down. The computation for these methods is identical for
all block types (for example, to shift left, subtract one
from the x-coordinate of each component square).
However, each block type must also rotate, and the
process of rotation (i.e. determining the new position of
each of the four component squares) is different for each
of the different block types. Figure 3 shows a single
clockwise rotation for three types of Tetris block: Long-
Block, Square-Block and T-Block.

o EE T

Figure 3: Polymorphic Rotation of Tetris Blocks

Students can easily see that the seven block types share a
set of common properties and methods, but implement
one of those methods differently — precisely the defining
features of a polymorphic architecture. Students cite the
Tetris assignment as one that contributes significantly to
their programming skill, because of its demonstration of
classes and inheritance (see Section 6 below for more
discussion of student feedback).

5.3 Physics and Computation with The Pirate
Ship of Doom

In the weapon-rich world of games, computation and
representation of projectile trajectories is essential. The
implementation of realistic physics is required for the
accurate shooting needed for game realism. In Interactive
Worlds, we introduce these issues via a simple cannon
shooting game. A screen shot is shown in Figure 4. This
exercise is based on a program found at the DelphiForFun
website (www.delphiforfun.com) maintained by Gary

Darby. This site contains a large number of
programming exercises that can be used to demonstrate
mathematical principles and programming techniques.

Figure 4: The Pirate Ship of Doom

In the Pirate Ship exercise, basic shapes are used to
represent a cannon and a cannon ball. The cannon must
be aimed correctly so that the cannonball hits the pirate
ship image at the far edge of the computer screen. The
vertices of the cannon shape are rotated using standard
trigonometric functions for rotation and translation. The
initial x and y velocities of the cannonball are computed
as a function of the angle of rotation and a user-
determined power value. The trajectory is described by
moving the cannonball image by its x and y velocities at
each game clock cycle. Semi-realistic gravity is modelled
by incrementing the y-velocity, but not the x-velocity.
See Roman (1999) for a detailed discussion of the
involved computations.

5.4 Recursion with a Computer Rat in a Maze

Recursion is traditionally a very challenging concept for
new programmers to master. In the Interactive Worlds
course we are able to demonstrate recursion in the very
concrete context of a maze-following program that uses a
standard backtracking algorithm®. After a brief discussion
of recursion and its use in backtracking, the logic of the
maze solving algorithm is presented as follows:

To find a path from start cell to finish cell
e For each neighbour
o Can we move there?

o Ifyes, is there a path from there to the finish
cell? (This is the recursive call)

= [fyes, we're done
o Ifno, back up and try the next neighbour

For simplicity, the “rat” in this task is implemented by
illustrating the sequence of locations traversed by the
algorithm. As the program “touches” each square of the
maze, it colours it, using different colours for the initial
traversal and for the backtrack. This enables students to
see the backtracking process clearly. An example is

* Students also write an iterative routine for random maze
generation in this task. For an example, see
http://www.mazeworks.com/mazegen/mazetut/.

shown in Figure 5, where the red squares are the main
path, and the silver squares are backtracking.

Figure 5: Maze Solver Task Showing Recursive
Backtracking Path

6 RESULTS

As stated above, we have made no attempt to formally
measure the effect of participation in the Interactive
Worlds course on programming skill. Doing so presents a
variety of technical difficulties (starting with simply
defining programming skill) and ethical issues, as it is not
acceptable to deny some students an effective course in
order that they may serve as control subjects. We must
thus rely on somewhat speculative evidence for our
assessment of success. We begin by considering the
performance of students on in-class tasks, and performing
an informal code inspection of the final 2D side-scrollers
produced in 2004. Additionally, we have collected
subjective feedback from students currently participating
in the second offering of the course, and from a small
sample of former students. By all metrics, we feel we
have achieved our goals of delivering an enjoyable course
while improving student programming skill. We discuss
these data in detail below.

6.1 In-Class Performance

When using the Incremental Development method
described above, it is essential that students not fall
behind in their course work. Since each course unit builds
upon previous ones, a student who misses a single task
may be poorly prepared for several subsequent sessions.
To encourage students to stay up-to-date, most practical
session tasks are considered “checkpoints”, and students
earn marks for completing them. The combined
checkpoint tasks total 20% of the student’s final course
mark. In addition to the exercises detailed in Section 5
above, there are checkpoint tasks for various stages in the
construction of the graphics classes, HCI evaluation,
simple algorithmic Al, implementation of a finite state
machine and experimentation with 3D graphics. During
the 2004 offering of the Interactive Worlds course the
overall checkpoint task completion rate was 81.67%.
This high value indicates that students generally obtained

sound performance in the programming basics associated
with each checkpoint task.

6.2 Code Inspection

As discussed above, the final project in Interactive
Worlds is the production of an original 2D side-scroller
game. This is a substantial assignment, worth 40% of the
total class mark. Students work in groups of two to four.
Our experience is that group work allows for the
construction of larger and more complex projects than
could be produced by a student working alone. Group
work also exposes the student to the sometimes complex
dynamics of working in a team, which is an important
skill in the IT industry (de Laet et. al, 2005). In the first
offering of the course, eight final projects were submitted
(created by 21 students working in eight groups). An
informal code inspection was performed, to check for
achievement of important course learning objectives. The
results of the inspection are summarised in Table 2.

Projects
demonstrating
Learning Objective objective
(Total N =8)
Correct C++ syntax, including 8
appropriate data types, flow of
control and use of pointers.
Correct division of units into 7
separate .cpp and .h files
Correct fielding of user input. 8
Correct assignment of actions to
user events
Correct implementation and use 7
of linked lists.
Correct definition of simple 8
classes
Correct use of inheritance and 5
polymorphism as appropriate
Creation and implementation of 8
2D multi-frame sprite animation
Correct use of external input files 8
Correct implementation of simple 4
physics -- rectangle collision
detection, gravity, trajectory
Correct use of simple Al 5
algorithms (e.g. approach/avoid)
and/or finite state machine.

Table 2: Code Inspection

All student projects showed a strong grasp of C++ syntax
and file management, although most students had no
previous exposure to the language (two students had
previously taken a course in Java; one student was
simultaneously enrolled in a course using C#).

While all student projects contained correct simple
classes, only 5 of 8 projects correctly used inheritance.
The most common error was declaration of multiple
independent classes that should have been descendants of
a common ancestor.

All projects incorporated the animation classes developed
during the term, and were able to extend them to provide
the full required functionality needed for backgrounds
and animations in their games.

A simple 2D side-scroller can be implemented without
physical simulation or artificial intelligence. Nonetheless,
half of the projects incorporated physical simulation of
some kind (mostly gravity for falling objects), and five of
eight used simple Al algorithms that had been presented
in class lectures and practicals. One project used a finite
state machine to control the behaviour of enemy game
entities.

This summary, although informal, indicates that the
Interactive Worlds course was successful in teaching our
novice programmers a new language and providing them
with a number of more advanced programming skills than
they had previously acquired. The design of good class
structures stands out as an especially difficult problem.

6.3 Student Self-Report Feedback

Nine students from the current offering of Interactive
Worlds (65% of the enrolled students) and six students
from the first offering (29% of the enrolled students)
completed self-report survey forms canvassing their
views on the course. Current students were asked to fill
out the survey during class. Former students were
contacted by e-mail. We had current e-mail addresses for
14 of the 21 students who completed Interactive Worlds
in 2004. Of those students, six responded to the e-mail
survey. Questions included both Likert-scale ratings, and
free comments. Responses are summarised in Tables 3
and 4.

How has participating in IT220 affected your
programming skills? They are now:

Much Worse Unchanged Better Much
Worse Better

0 0 0 6 3
IT220 is an enjoyable class.
Strongly | Disagree No Opinion Agree | Strongly
Disagree Agree

0 0 0 4 5
Games programming is an effective way to teach
basic programming techniques.
Strongly | Disagree No Opinion Agree | Strongly
Disagree Agree

1 0 1 3 3

Table 3: Current Student Survey Responses

Current Students: When asked if their programming
skills have improved, and if the class is enjoyable, student

responses are uniformly positive. One student felt that
games development is not an effective context for
teaching programming. In comments, this student
expressed a concern that techniques which would be
important in industries other than games were being
neglected. This is certainly a legitimate concern. In a
general CS program, a variety of programming courses
are required to insure that students acquire a sufficiently
broad set of skills.

Students were also asked to comment on various aspects
of the course. When asked in what specific ways their
programming skills had improved, seven of nine
respondents mentioned their understanding of object-
oriented design. As stated above, games programming
lends itself particularly well to the demonstration of OO
technique.

When asked what aspects of the course had contributed
most to their improved coding skills, six of nine
respondents referred to the large quantity of code they
had written during the course. As noted above, students
who are having fun will put more time and effort into
their assignments. These students perceive that such
concentrated practice directly contributes to improved
programming ability.

When asked what parts of the course they found most
enjoyable, four of nine students mentioned the
opportunity to write complete applications. Students
mentioned the pleasure of “sinking my teeth into a
substantial project”, “making my own games” and
“seeing my games running”. Apparently even relatively
simple games, perhaps by virtue of their well-defined
goals, provide a sense of completion and accomplishment
that promotes student motivation and satisfaction.

If you have programmed since I'T220, how much did
you use the skills and techniques you learned in
IT220 in the code you have written?’

Not at all A Small A Moderate A Lot
Amount Amount
0 0 2 3
How did participating in IT220 affect your
programming skills? It made them:

Much Worse Unchanged Better Much
Worse Better
0 0 0 1 5

IT220 was an enjoyable class:
Strongly Disagree No Opinion Agree Strongly
Disagree Agree
0 0 0 1 5

Games programming is an effective way to teach
general programming techniques.

Strongly Disagree No Opinion Agree Strongly
Disagree Agree
0 0 0 2 4

Table 4: Former Student Survey Responses

* One of the former students does not program in his current job.

Former Students: Feedback from former students (see
Table 4) was also uniformly positive. Although the
sample size is small, the responses are extremely
consistent, and lead us to hope that the Interactive Worlds
class is, in fact, both enjoyable and effective.

When asked what skills acquired in Interactive Worlds
they were using in their current work, students mentioned
C++, OO design and linked lists. One student mentioned
that he continues to work on his games in his spare time.
This is not, in our experience, a comment often heard
about old assignments in more traditional programming
courses.

6.4 User Feedback

Of course, the ultimate evidence of successful
programming is the production of good software
products, and by this criterion we feel the Interactive
Worlds course has been a great success. Several of the
original games produced in the Interactive Worlds course
in 2004 were demonstrated at a recent departmental
public event, and were received with great enthusiasm.
Screenshots of some of the games produced in 2004 are
shown in Figure 6.

Figure 6: Sample Screenshots from Interactive
Worlds Student Projects

7 CONCLUSION

Computer science educators need not be distressed by the
attitude of today’s computer science students, who think
computers are for CounterStrike, not for calculus. On the
contrary, we can embrace the graphical and interactive
power of new IDEs and development tools, and use these
strengths to develop rich and exciting courses without
sacrificing pedagogical heft. Every computer science
department probably could probably use an Incredible
Rainbow Spitting Chicken.

8 References

ACM Curricula Recommendations Website (2005):
www.acm.org/education/curricula.html, Accessed 21-
Oct-05.

Becker, K. (2001): Teaching with games: the
minesweeper and Asteroids experience, Journal of
Computing in Small Colleges, 17(2): 22-32.

Borland (2005): www.borland.com, Accessed 21-Oct-05.

Coleman, R., Krembs, , M., Labouseur, , L. and Weir, J.
(2005): Game Design & Programming Concentration
Within the Computer Science Curriculum. Proceedings
of the 36th SIGCSE technical symposium on Computer
science education, St. Louis, Missouri, USA, 545-550.

Curtis,S.A. (2005): Word Puzzles in Haskell: Interactive
Games for Functional Programming Exercises.
Proceedings of the 2005 workshop on Functional and

declarative programming in education, Tallinn,
Estonia,15-18.

Decker, R. and Hirshfield, S. (1993): Top-Down
Teaching: Object-Oriented Programming in CSI,

Proceedings of the twenty-fourth SIGCSE technical
symposium on Computer science education,
Indianapolis, Indiana, USA, 270-273.

De Laet, M., Slattery, M.C., Kuffner, K. and Sweedyk, E.
(2005): Computer Games and CS Education: Why and
How. Proceedings of the 36th SIGCSE technical
symposium on Computer science education, St. Louis,
Missouri, USA, 256-257.

Duke, R.. Salzman, E., Burmeister, J., Poon, J. and
Murray, L. (2000): Teaching Programming To
Beginners — Choosing The Language Is Just The First
Step, Proceedings of the Australasian Conference on
Computing Education, Melbourne Australia, 79-86.

Fincher. S., Baker, B., Box, I., Cutts, 1., de Raadt, M.,
Haden, P., Hamer, J., Hamilton, M., Lister, R. Petre,
M., Simon, Robins, A., Sutton, K., Tolhurst, D., Tutty,
J. (2005): Programmed to succeed?: A multi-national,
multi-institutional study of introductory programming
courses. Technical — Report 1-05, Computing
Laboratory, University of Kent, Canterbury, Kent, UK.

Garner, S., Haden, P. and Robins, A. (2005): My Program
is Correct But it Doesn't Run: A Preliminary
Investigation of Novice Programmers' Problems. Proc.
Seventh Australasian Computing Education
Conference , Newcastle, Australia, 173-180.

Giguette, R. (2003): Pre-Games: Games Designed to
Introduce CS1 and CS2 Programming Assignments,
Proceedings of the 34th SIGCSE technical symposium
on Computer science education, Reno, Nevada,
USA.,288-292

Guzdial, M. and Soloway, E., (2000): Teaching the
Nintendo Generation to Program, Communications of
the ACM, 45(4): 17-21.

Haden, P and Mann, S. (2003): The Trouble With
Teaching Programming, Proceedings of the NACCQ,,
Palmerston North, New Zealand, 63-70.

Haden, P. & Gasson, J (2004): Easy and Effective
Streaming for Introductory Programming Courses,.
Proceedings of the NACCQ, Christchurch, New
Zealand, 281-284.

Huang, T. (2001): Strategy game programming projects.
The Journal of Computing in Small Colleges, 16(4)
205-213.

Jones, R. M. (2000): Design and Implementation of
Computer Games: A Capstone Course for
Undergraduate Computer Science Education. 4CM
SIGCSE Bulletin, 32(1), 260-264.

Kearsley, G. and Sheniderman, B. (1999): Engagement
Theory: A Framework For Technology-Based
Teaching And Learning,

http://home.sprynet.com/~gkearsley/engage.htm

Loblo, A.F., Baliga, G.R., Bergmann, S. Stone, D., Shar,
A. (2000): Using Real-world Objects to Motivate OOP
in a CS1 lab. Journal of Computing in Small Colleges,
15(5):144-156

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L.,
Utting, 1., & Wilusz, T. (2001): A multinational, multi-
institutional study of assessment of programming skills
of first-year CS students. ACM SIGCSE Bulletin,
33(4):125-140.

Morrison, M. (2003): Sams Teach Yourself Game
Programming in 24 Hours. Pearson Education, Sams
Publishing, Indiana, USA.

Parberry, 1. (2000): Learn Computer Game Programming
with DirectX 7.0. Wordware Publishing.

Parberry, 1. (2001): Introduction to Computer Game
Programming with DirectX 8.0. Wordware Publishing.

Parberry, I, Roden, T. Kazemzadeh, M. (2005):
Experience with an Industry-Driven Capstone Course
on Game Programming, Proceedings of the 36th

SIGCSE technical symposium on Computer science
education. St. Louis, Missouri, USA, 91-95

Phelps, A., Bierre, K. and Parks, D. M. (2003):
MUPPETS: Multi-User Programming Pedagogy for
Enhancing Traditional Study. Proceeding of the 4th
conference on Information technology curriculum,
Lafayette, Indiana, 100-105

Pleva,G. (2004): Game programming and the myth of
child's play. Journal of Computing Sciences in
Colleges, 20(2):125-136.

Leska, C. and Rabung, J.(2005): Refactoring the CSlI
course. Journal of Computing Sciences in Colleges,
20(3):6-18

Roman, E. (1999): Gravity FAQ.

http://www.gamedev.net/reference/articles/article694.asp

Ross, JM. (2002): Guiding Students through
Programming Puzzles: Value and Examples of Java
Game Assignments. ACM SIGCSE Bulletin 34(4):94-
98

Valentine, D (2005), Playing around in the CS
curriculum: Reversi as a teaching tool, Journal of
Computing Sciences in Colleges. 20(5): 214-222.

