

CASE STUDIES IN ENGINEERING AND TECHNOLOGY INNOVATION IN THE CARIBBEAN: A FOCUS ON EDUCOLCOM AND BEVCOM

Jason R. Rameshwar^{1*} and Graham S. King²

^{1,2}Faculty of Engineering, The University of the West Indies, Trinidad ¹Email: jrameshwar@gmail.com *(Corresponding author) ²Email: graham.king@sta.uwi.edu

Abstract: Caribbean SMEs (EduColCom and BevCom) identified Industry 4.0 (I4.0) enabling technologies integrating areas of their value networks. This enabled them to be innovative, competitive and sustainable within the global marketplace. This paper illustrated Proof of Concept examples of I4.0 technologies and overcoming implementation challenges by horizontally integrating with a vendor.

Structured interviews with C-level executives determined each SME's I4.0 developmental readiness and the methods used to select and adopt new technologies. Their strategies were based on the existing stability of each system and reinforced the need of C-level support for transformation. Their evolution roadmaps can be duplicated by other SMEs to achieve similar improvements.

Keywords: Competitiveness, Evolution Roadmap, Industry 4.0, Innovation, SIDS SME.

https://doi.org/10.47412/EBWB6632

1. Introduction

SMEs in Small Island Developing States (SIDS) must compete against global companies selling products and services to their local customer base. Internet retail allows any customer to purchase any product from any manufacturer or service provider in the global marketplace.

Island based economies share common features of having a small local market size (in comparison to larger continents as America and Europe), being surrounded by water which increases cost and time to reach larger markets (by requiring the use of sea and air transport) and having smaller manufacturing and production facilities than their larger global competitors (SMEs struggle to adequately compete with their economies of scale).

Thus, SMEs in Trinidad and Tobago, a twin-island republic in the Caribbean, continually compete globally even though physically restricted to the local geography.

Despite this, SMEs in SIDS can be competitive in the global marketplace through innovation to achieve and sustain their position. While technology can facilitate this goal, it can be costly to acquire and adopt. Given their small market base from which to gain revenue for investments, these organisations must be strategic in their approach.

C-level executives drive a company's strategy as they continually examine and evaluate internal and external factors affecting the business, process and customer. Strategies and technologies associated with

Industry 4.0 (the common term for the current Forth Industrial Revolution) enable SMEs to achieve innovation, competitiveness and sustainability.

This paper examined two local SMEs, BevCom and EduColCom, in their use of I4.0 enabling technologies to derive strategic benefits that enabled them to sustain competitive positions in the global marketplace through continuous innovation and sustainability. The report illustrated this achievement through an understanding of Industry 4.0 (I4.0), identification of emerging technologies that enable I4.0 and its benefits, the methodology used to analyse the SMEs that identified their current and future technology investment and their strategic evolutionary roadmaps.

2. Industry 4.0 (I4.0) and the Fourth Industrial Revolution (4IR)

The term and concept of Industry 4.0 was publicised at the Hannover Fair in Germany in 2011, where it was introduced as Industrie 4.0 [1–3]. Five years later, the phrase "Fourth Industrial Revolution" was coined by Klaus Schwab [4]. Although a different terminology and wider focus, it shares many of the same key points as the earlier Industry 4.0 and is often used interchangeably [5 pp. 17–18].

However, the impact of the evolutionary change of I4.0 was first highlighted within the definition by the German Trade and Invest (GTAI) [1 p. 4]. The key foci were the phrases "paradigm shift", "product communicates with machinery" and "tell it exactly what to do". These terms outlined the change that I4.0 would initiate but that it would necessitate a technological change to facilitate them.

The synthesis of authors' descriptive assessments of I4.0 identified specific keywords that specify the key concepts of I4.0. Each is linked to their contributory I4.0 design principles [6 p. 12]:

- Evolution [of systems] [7, 8 p. 104; 9 p. 10; 10 p. 4] : Optimisation
- Connected systems [1 p. 5; 2 p. 411; 9 p. 10; 10 p. 4; 11 p. 1; 12 p. 9; 13 p. 12; 14 p. 24; 15 p. 6; 16 p. 1622] : Co-ordination of infrastructure and processes + Communication between all internal and external systems
- Decentralised [systems] [13 p. 13; 17 p. 6] : Decentralised
- Intelligent [systems] [3 p. 173; 9 p. 7; 12 p. 5; 13 p. 13] : Communication between all internal and external systems + Awareness of self + Knowing to provide feedback
- Integration of horizontal and vertical value chains [8 p. 174; 18 p. 38] : Integration + Coordination of infrastructure and processes + Communication between all internal and external systems

These key concepts led to the development of a comprehensive definition for Industry 4.0 that encompasses both the strategy and technological requirements needed to initiate change. Thus we define I4.0 as "*the evolutionary change in decentralised connected systems to enable the intelligent integration of the horizontal and vertical value chains of the organisation*" [19 pp. 11–12; 20 pp. 48–49; 21 p. 4].

3. Emerging Technologies

Technology facilitates evolution in a company so it can achieve the key concepts of I4.0. Enabling technologies for I4.0 include [7 p. 130; 15 p. 6; 22 p. 2; 23 p. 24; 24 p. 5]:

- Machine learning
- Data mining
- Mobility technologies (mobile devices)
- Cloud computing
- Augmented reality and wearables
- Big Data analytics and advanced algorithms

- Autonomous robots
- System integration
- Cybersecurity, authentication and fraud detection
- Internet of Things (IoT) platforms
- Simulation
- Additive manufacturing and 3-D printing
- Smart sensors
- Advanced human-machine interfaces
- Multilevel customer interaction and customer profiling (community)
- Location detection technologies

However, specific technology continues to change and this process from the beginning at the "innovation trigger" to the "plateau of productivity" outlines the path each technology takes throughout its lifecycle [25]. In 2019, the Gartner Hype Cycle identified strategic technology trends in the categories of intelligent, digital and mesh [26]. As illustrated in Table 30, each of the 2019 technologies are linked to different I4.0 enabling technologies. This was identified by evaluating each type of technology and the requirements needed for the application of the tool. This reinforced the concept that the choice of I4.0 enabling technology (or combination of technologies) is dependent upon the strategic focus of the need based on specific use cases. This aspect promotes evolution within various technologies as their modification is achieved by changing the integration of various enabling technologies.

Gartner 2019	Linked I4.0 Enabling Technologies	
Technologies		
Autonomous Things	Autonomous robots; Machine learning; Smart sensors	
Augmented	Augmented reality and wearables; Data mining; Big Data analytics and	
Analytics	advanced algorithms; System integration; Simulation; Advanced human-	
	machine interfaces	
AI-driven	Machine learning; Cloud computing; Data Mining; Big Data analytics and	
Development	advanced algorithms	
Digital Twin	Data mining; Cloud computing; Big Data analytics and advanced algorithms;	
	System integration; Internet of Things platforms; Simulation; Smart sensors	
Empowered Edge	Data mining; Big Data analytics and advanced algorithms; System Integration;	
	Internet of Things (IoT) platforms; Smart sensors	
Immersive	Data mining; Augmented reality and wearables; Big Data analytics and	
Experience	advanced algorithms; System integration; Simulation; Smart sensors; Advanced	
	human-machine interfaces; Location detection technologies	
Blockchain	Data mining; Cloud computing; Big Data analytics and advanced algorithms;	
	Cybersecurity, authentication and fraud detection; System integration	
Smart Spaces	Machine learning; Data mining; Cloud computing; Augmented reality and	
	wearables; Big Data analytics and advanced algorithms; System integration;	
	Internet of Things (IoT) platforms; Smart sensors; Advanced human-machine	
	interfaces; Multilevel customer interaction and customer profiling (community);	
	Location detection technologies	
Digital Ethics and	Machine learning; Cloud computing; Big Data analytics and advanced	
Privacy	algorithms; Cybersecurity, authentication and fraud detection; Multilevel	
	customer interaction and customer profiling (community)	
Quantum	Machine learning; Cloud computing; Big Data analytics and advanced	
Computing	algorithms	

 Table 30: Gartner 2019 Technologies linked to I4.0 Enabling Technologies

4. I4.0 Enabling Technology Benefits

Each of the enabling technologies has the potential to move an organisation closer to adopting aspects of I4.0. The achievement of this goal is based upon derived benefits that accompany this transition.

An overview of the benefits of I4.0 was derived from an analysis of key phrases used by authors on the topic [7, 9, 27, 11-15, 17, 18, 23]. These benefits were categorised into three thematic groupings: business; process; and customer [19 pp. 33–35; 20 pp. 51–52; 21 p. 4] and arranged to highlight the similarities in benefits across the three groupings, as illustrated in Table 31. As highlighted by the dashed blocks, the common benefits to all are information, quality assurance and time (real-time and reduced loss time). This supports the impact of the I4.0 key concepts in driving change through the adoption of the enabling technologies thus facilitating incremental changes [28 p. 2954] as they evolve to satisfy the needs of the specific applications of the business, process and consumer.

Business	Process	Customer
Information	Information	Information
Quality assurance	Quality assurance	Quality assurance
Time (real-time and reduced	Time (real-time and reduced	Time (real-time and reduced
loss time)	loss time)	loss time)
Competitive	Efficiency	Loyalty
Quantity independent price	Optimisation	Quantity independent price
model		model
Value creation	Value creation 、	Satisfaction
/ Expense reduction and/or	Expense reduction and/or	Growth
i minimisation	minimisation	
Flexibility	Flexibility	
l Improvement	Improvement	
L Decentralisation	Decentralisation	
Easily influenced	Easily influenced	
Performance	Performance	
Transparency	Transparency	
Safety	Safety	
New businesses	Reliability	
New services		
Profit		

Table 31: I4.0 Benefits and Opportunities	Table 31:	I4.0	Benefits	and Op	portunities
---	-----------	------	----------	--------	-------------

The application of I4.0 enabling technologies through various levels of an organisation's value network achieves specific benefits associated with the interconnectedness throughout the levels B2C (Business to Consumer), B2B (Business to Business), Final Product, WIP (Work in Process), Raw Materials and Supplier. Tools used to strengthen connections between networks as well as create new linkages between disparate elements satisfy the connected and integration elements of the I4.0 key concepts.

5. Methodology

Research conducted in 2017 identified specific companies in Trinidad and Tobago that were developmentally ready to evolve to I4.0 [19]. Those SMEs identified current and planned investments in specific I4.0 enabling technologies without actively pursuing an I4.0 strategy. This study focused on two companies not previously interviewed. A beverage manufacturer, BevCom, and one that focuses on

education with a strong emphasis on ICT systems, EduColCom, to understand their decision process and evaluate its linkages to I4.0.

Each company satisfied the same conditions, used in the original research [19 p. 39], as being registered as a business and operates in Trinidad and Tobago; produces manufactured goods with sales either 100% local or combined local and export; has the potential for customisation; and companies with whom the researcher has access to management for conducting interviews.

Although EduColCom is an educational facility, it adhered to the same system of production and manufacturing, in which the raw materials are the students with specific knowledge and competence levels. The transitional changes that occur throughout the academic life of each student represent WIP and the final output of finished products is graduate students with the ability to function in a work environment. B2B relationships are the links between the organisation and the work environments in which each graduate will ultimately function. B2C relationships involve providing end users ('consumers' that benefit from the skills of the graduates) with developed and maintained products and services (graduates). Entrepreneurial activities occur in direct linkages from Final Product (graduate) to the end user ('consumers').

To maintain consistency with the assessment performed in 2017, the original research instrument was administered to the C-level executives [29 p. 3; 30 p. 84; 31 p. 86] as they had a clear understanding about their company's strategy and decision making factors that influenced the selection of the technologies being utilised. Assessments of their responses as well as a plant tour were used to analyse each company in terms of the I4.0 key concepts of evolution [of systems], connected systems, decentralised [systems], intelligent [systems], and integration of value chains, in order to identify the strongest areas and which enabling technologies are used.

6. Technologies Identified for Current and Future Investment

The need for specific technologies is driven by the goal to facilitate innovation, competitiveness and sustainability as each SME strives to achieve the benefits afforded by I4.0. The technologies adopted by BevCom (Table 32) and EduColCom (

Table **33**) are summarised to demonstrate the purpose, benefits and integration of specific elements within their value chains. The relationship between each tool and the I4.0 enabling technologies highlighted in Table 34 show that each is comprised of fundamental subsets that demonstrate the evolution of emerging technologies.

Technology	Purpose	Benefits	Integration
Virtual	Remote troubleshooting and	Reduced equipment downtime;	WIP
Reality	maintenance advice from	Elimination of costs due to	manufacturing
headsets	OEM	transportation, meals and	with equipment
		accommodation for OEM's	Supplier
		technical specialist	technical support
IoT enabled	Energy quality parameters	Real-time access to changes in	WIP
digital energy	measurement and remote	energy parameters enabled	manufacturing
meters	access of meter data for	predictive and preventative	with plant
	analysis	maintenance; Accurate	reliability
		identification of electrical	
		problems in specific electrical	
		lines and equipment; Reduction	
		of entire plant shut down to	
		locate faults; Allocate energy	

Table 32: Be	vCom Te	echnology	Adoption

		usage to unit cost of	
		manufactured product	
3D printing	Product innovation with	Current stage is in evaluating the	WIP design with
	specific focus on bottle	costs for implementation vs the	B2C Consumer
	parameters for marketing and	perceived ROIs using the	
	functionality within	framework in Figure 25	
	manufacturing environment;		
	Cost reduction in inventory		
	management; Spare parts		
	replacement for timely repairs		
	or unsupported equipment		
GPS fleet	Monitor and create alerts for	Determine route profitability to	Final Product
management	sales vehicles along planned	allocate additional resources to	with B2B
	routes; Future: Enhancements	service existing and new	Consumer
	as monitoring of cab's video	customers; Identify unplanned	
	and audio for safety, Cooler	vehicle stops to obtain driver	
	environment monitoring for	justification	
	product quality, Tracking	5	
	product inventory		
CRM social	Evaluate social media feeds	Customer feedback mechanism	Final Product
media	for negative keywords related	to identify and solve specific user	with both B2B
integration	to organisation, operations	issues; Identify and exploit	and B2C
C	and products; Future:	opportunities based upon	consumers
	Automatic integration with	comments	
	ERP platform		
Cloud	Store critical systems on	Disaster recovery, backup and	Enables
infrastructure	hardware off site in both local	remote access; Cloud security	integration
	data centres and the Cloud	and access to Cloud based	between all
		features; Outsourced non-value	value networks
		added items	through Cloud
			access

Table 33: EduColCom Technology Adoption

Technology	Purpose	Benefits	Integration
Amazon	Understanding natural	Provide easier	Student integrated with
Alexa	language forms of questions;	communication interface	knowledge base
assistant	Ability to trigger other event	between students and	repository at all value
	conditions as chat bots	information repositories	networks from Raw
			materials to Final product
Chatbots	Reliable connectivity allows	Reduce student negative	Student integrated with
	students to quickly and easily	perceptions and	knowledge base
	receive answers to common	complaints due to lack of	repository at all value
	questions 24/7; Future:	communication and	networks from Raw
	Enable student to access own	difficulty finding answers	materials to Final product
	confidential information		
Proximity	Push notifications to	Students receive relevant	Student integrated with
beacons	registered phones	time-dependent messages	knowledge base
		as key reminders for	repository at all value

		specific actions based on	networks from Raw
		beacon location	materials to Final product
AI responses	Intelligent responses to	Understand the intent of	Student integrated with
	unplanned student questions	the student question to	knowledge base
		provide safe and accurate	repository at all value
		recommendations	networks from Raw
			materials to Final product
Cloud	Store critical systems on	Disaster recovery, backup	Enables integration
infrastructure	hardware off site in both local	and remote access; Cloud	between all value
	data centres and the Cloud	security and access to	networks through Cloud
		Cloud based features;	access
		Outsourced non-value	
		added items	
Student	Enable online payment at any	Flexible and reliable	Financial transactions
payment	time via student ID access;	portal for remote payment	linked with ERP financial
pipeline	Real-time update of received	of fees ensuring timely	module and student
	funds	registration for courses	registration

Table 34: Company Technologies linked to I4.0 Enabling Technologies		
Company identified	Linked I4.0 Enabling Technology	
technology		
Virtual Reality headsets	Data mining; Augmented reality and wearables; Big Data analytics and	
	advanced algorithms; System integration; Simulation; Smart sensors;	
	Advanced human-machine interfaces; Location detection technologies	
IoT enabled digital	Internet of Things (IoT) platforms; Cloud computing; Big Data analytics	
energy meters	and advanced algorithms	
3D printing	Additive manufacturing and 3-D printing; Simulation	
GPS fleet management	Location detection technologies; System integration; Data mining	
CRM social media	Multilevel customer interaction and customer profiling (community);	
integration	System integration; Big Data analytics and advanced algorithms	
Cloud infrastructure	System integration; Cybersecurity, authentication and fraud detection;	
	Cloud computing	
Amazon Alexa assistant	Machine learning; Cloud computing; Data Mining; Big Data analytics and	
	advanced algorithms; Autonomous robots; System integration; Internet of	
	Things (IoT) platforms; Multilevel customer interaction and customer	
	profiling (community)	
Chat bots	Data mining; Autonomous robots	
Proximity beacons	Mobility technologies (mobile devices); Location detection technologies	
AI responses	Machine learning; Cloud computing; Data Mining; Big Data analytics and	
	advanced algorithms	
Student payment	Cybersecurity, authentication and fraud detection	
pipeline		

Table 34: Company Technologies linked to I4.0 Enabling Technologies

The emerging technologies assisted the SMEs to be developmentally ready for I4.0. However, improvements should be focused in areas of integration of value chains, connected systems and intelligent [systems] (

). Cloud platforms facilitate these changes as each SME adopts more of its features.

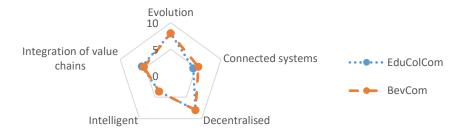


Figure 24: I4.0 Relative Readiness of EduColCom and BevCom

Each SME's relative value was determined by the combination of an averaged value of their key concept, based on its specific linkages to the I4.0 design principles (section 2), and a qualitative comparative assessment of each SME based on their I4.0 drivers and challenges as well as facility tours [6 p. 17]. Value of 10 was used to illustrate the full I4.0 concept and 0 denoted it was neither started nor considered [19 p. 97]. EduColCom scored higher in concepts of integration and awareness and BevCom was higher in communication, which improved their overall connected system concept.

7. Evolution Roadmaps

In the BevCom process (Figure 25), each decision factor is matched to an appropriate I4.0 technology to satisfy the factor's requirements. The specific tool is evaluated on costs as well as value generated to determine the potential of investment in a proof of concept (PoC) that would enable the organisation to practically determine the true effects, whilst reducing the risk involved in a plant-wide adoption. In this method, vertical and horizontal integrations are based on value need as well as an understanding and acceptance that new technology benefits are unproven until implemented and used. Their assessment is continuous as they operate in a dynamic environment of varying consumer requests, evolving competitors, and fluctuating availability and costs of raw materials. This promotes evolution.

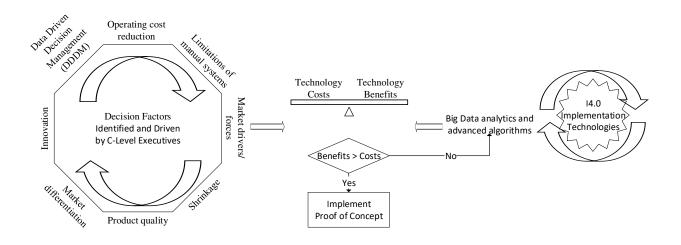


Figure 25: BevCom Decision Factors Linked to Technology ROI

Ownership Gap Analysis Limitations Solutions Buy-in Partnership Critical Systems Continuous Evolution Improve System Non-Critical Systems Marketing Figure 26: EduColCom Decision Steps

EduColCom utilised a segmented approach summarised as sequential steps (Figure 26). The focus on critical systems before progressing to the next phase (improvement and evolution) ensured a successful transformation. It started with the C-level executive accepting ownership of the situation and performing a gap analysis to understand the system inefficiencies and potential opportunities to strengthen integrations. Identification of limitations (financial, technology, experienced staff) framed the needed solutions advised by the technology vendor. Buy-in from the stakeholders was accomplished by discussing problems and solutions to provide a unified approach to the problems. Horizontal integration with the technology provider created a partnership that enabled costs reduction in exchange for EduColCom being a test case (PoC). The stability of critical systems and its marketing encouraged easier and faster adoption of the changes. This enabled them to focus on continuous improvements by evaluating non-critical systems and trouble areas that the implemented technology would solve. These changes facilitate evolution.

EduColCom's horizontal integration with a technology vendor may not be available for all SMEs. Thus, a similar approach is the formation of an I4.0 cluster group with other non-competitive SMEs in which each would benefit from the sharing of the resources and costs amongst one other [19 pp. 122–129; 20 p. 54; 21 pp. 14–15].

Each strategic roadmap was compared in Table 35. The specifics of their approach varied due to the stability (or instability) of their systems, thus highlighting two pathways for evolution.

Factors	EduColCom: Unstable system	BevCom: Stable system
Primary goal	Identify and stabilise critical systems	Continuous improvement and evolution
Sequence	Linear segmented progression of	Iterative matching of selected decision factors
	processes (each step dependent upon	(priority given to the highest cost factors of
	its predecessor)	the production environment) with I4.0
		enabling technologies
System	Cloud based systems (Technologies (Table 32) to continuously
development	Table 33) and partnership with	drive the organisation to remain competitive,
	technology vendor selected due to	via value generation, reduction of costs
	financial limitations and insufficient	(including inefficiencies) and disruption
	experienced personnel	
Adoption	Continuous implementation and use	PoCs evaluated before full implementation
	through marketing until stability of	facilitated lower risk and smaller investments
	systems achieved	to reduce impact to the entire plant and
		manage change

Table 35: Key differences in	strategic roadmaps used b	y EduColCom and BevCom
------------------------------	---------------------------	------------------------

8. Conclusion

In each strategy support at the C-level is a key driving force for evolutionary change to achieve innovation, competitiveness and sustainability through the implementation of I4.0 enabling technology.

EduColCom formed a horizontal integration with the technology vendor to stabilise their system as well as improve their services for the students. An alternate option is the formation of an I4.0 cluster, with non-competitive entities, to enable sharing of resources and reduction of procurement costs through economies of scale.

The value is in the choice of strategy to initiate and maintain evolution. EduColCom utilised a segmented approach that started with the C-level executive accepting ownership of the situation, securing buy-in from the stakeholders, horizontally integrating with the technology provider and stabilising the system before focusing on continuous improvements. BevCom's approach was based on a stable system and driven by decision factors identified and supported by C-level executives. Each factor was paired with a specific technology to satisfy the requirements, then a cost vs benefit evaluation determined whether a PoC would be implemented to test the validity of the change before consideration of a wider plant adoption.

References

- [1] Sniderman, B., Mahto, M., Cotteleer, M.J.: 'Industry 4.0 and manufacturing ecosystems Exploring the world of connected enterprises' (2016)
- [2] Vogel-Heuser, B., Hess, D.: 'Guest Editorial Industry 4.0–Prerequisites and Visions'*IEEE Trans. Autom. Sci. Eng.*, 2016, 13, (2), pp. 411–413.
- [3] Qina, J., Liua, Y., Grosvenora, R.: 'A Categorical Framework of Manufacturing for Industry 4.0 and Beyond'*Procedia CIRP*, 2016, 52, (2016), pp. 173–178.
- [4] Schwab, K.: 'The fourth industrial revolution' (Crown Publishing Group, 2016, First)
- [5] Philbeck, T., Davis, N.: 'The Fourth Industrial Revolution: Shaping a New Era'J. Int. Aff., 2019, 72, (1), pp. 17–22.
- [6] Rameshwar, J.R., King, G.S.: 'Developmental Requirements Implementing Industry 4.0 in Trinidad and Tobago Companies' *J. Assoc. Prof. Eng. Trinidad Tobago*, 2019, 47, (2), pp. 11–19.
- [7] Sherwin, P.: 'Industry 4.0 + IIoT = Smart Industrial Ovens & Furnaces' *Process Heat.*, 2016.
- [8] Prause, M., Weigand, J.: 'Industry 4.0 and Object-Oriented Development Incremental and Architectural Change' *J. Technol. Manag. Innov.*, 2016, 11, (2), pp. 104–110.
- [9] KUKA Aktiengesellschaft: 'Hello Industry 4.0 we go digital' (2016)
- [10] VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik: 'Status Report Reference Architecture Model Industrie 4.0 (RAMI4.0)' (2015)
- [11] Roblek, V., Meško, M., Krapež, A.: 'A Complex View of Industry 4.0'*SAGE Open*, 2016, April-June, pp. 1–11.
- [12] Heng, S.: 'Industry 4.0 Upgrading of Germany's industrial capabilities on the horizon' (2014)
- [13] Wernicke, I.H.: 'Achieving Sustainable Economic Growth from the European Point of View'J. *Econ. Dev. Manag. IT, Financ. Mark.*, 2015, 7, (2), pp. 1–23.
- [14] Ramanathan, K.: 'Industry 4.0 Implications for the Asia Pacific Manufacturing Industry' *SMT Surf. Mt. Technol.*, 2015.
- [15] Geissbauer, D.R., Vedso, J., Schrauf, S.: 'Industry 4.0: Building the digital enterprise' (2016)
- [16] Bagheri, B., Yang, S., Kao, H.-A., et al.: 'Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment'*IFAC (International Fed. Autom. Control.*, 2015, 48, (3), pp. 1622–1627.
- [17] MacDougall, W.: 'INDUSTRIE 4.0 Smart Manufacturing for the Future' (2014)
- [18] CFE Media: '2016 Digital Report IIoT' (2016)
- [19] Rameshwar, J.R.: 'Getting Ready for Industry 4.0 in Trinidad and Tobago: An Assessment of Developmental Requirements of Case Study Companies'. MSc. Thesis, The University of the West Indies, 2017
- [20] Rameshwar, J.R., King, G.S.: 'Developmental Requirements for Implementing Industry 4.0 in Trinidad and Tobago Companies', in Pun, K.F. (Ed.): 'The IEM4-2018 Conference: Striving for performance excellence with quality management and IEM practices' (Faculty of Engineering, The

University of the West Indies, 2018), pp. 48–56

- [21] King, G.S., Rameshwar, J.R.: 'Stimulating Innovation through Industry 4.0 in a Small Commodity-Based Economy', in '2017 ISPIM Innovation Summit (Melbourne) Presentation' (2017)
- [22] Moustapha, H.: 'Aerospace 4.0' (2016)
- [23] Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., *et al.*: 'Cloud Computing Resource Scheduling and a Survey of Its Evolutionary Approaches' *ACM Comput. Surv.*, 2015, 47, (4), pp. 1–33.
- [24] Bechtold, J., Lauenstein, C., Kern, A., *et al.*: 'Industry 4.0 The Capgemini Consulting View Sharpening the Picture beyond the Hype' (2016)
- [25] Gartner: 'Hype Cycle Research Methodology', https://www.gartner.com/en/research/methodologies/gartner-hype-cycle, accessed May 2019
- [26] Panetta, K.: 'Gartner Top 10 Strategic Technology Trends for 2019', https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/, accessed May 2019
- [27] Vogel-Heuser, B., Rösch, S., Fischer, J., *et al.*: 'Fault Handling in PLC-Based Industry 4.0 Automated Production Systems as a Basis for Restart and Self-Configuration and Its Evaluation'*J. Softw. Eng. Appl.*, 2016, 09, (01), pp. 1–43.
- [28] Xu, L. Da, Xu, E.L., Li, L.: 'Industry 4.0: state of the art and future trends' *Int. J. Prod. Res.*, 2018, 56, (8), pp. 2941–2962.
- [29] Syan, C.S., Ramoutar, K.: 'Impact of Company Size on Manufacturing Improvement Practices An empirical study'*IOP Conf. Ser. Mater. Sci. Eng.*, 2014, 65, (2014), pp. 1–8.
- [30] Syan, C., Ramoutar, K.: 'Assessment of the Status of the Manufacturing Industry in Trinidad and Tobago and the Caribbean', in '24th International Conference on CAD/CAM, Robotics and Factories of the Future At: Koriyama, Japan, June 2008' (2008)
- [31] Pun, K.F., Jaggernath-Furlonge, S.: 'Impacts of company size and culture on quality management practices in manufacturing organisations' *TQM J.*, 2012, 24, (1), pp. 83–101.