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Abstract - The possibility of chaotic behavior in DC-DC
converters under current-mode control has been well es-
tablished by prior work. Although the spectral modifica-
tions that are associated with chaotic operation may pro-
vide an important motivation for actual operation in this
regime, the literature on chaos in power electronics has
tended to treat it more as an exotic effect than as a fea-
sible mode of operation. This may explain why none of
the prior work that we are aware of has attempted — for
the chaotic regime — to characterize even the most basic
property of DC-DC converters, namely the input-output
gain (which is the ratio of the average output voltage to
the DC input voltage).

The present paper shows how to compute this gain,
and other averages of interest, for the chaotic regime of
buck, boost, and buck-boost converters under constant-
frequency current-mode control and in continuous con-
duction. Our approach invokes the fact that the chaotic
sampled inductor current is ergodic, hence governed by a
“probability” density, which permits time averages to be
replaced by ensemble averages. Although the density can
be computed in detail, it turns out that approximating it
(quite crudely!) as a uniform density still yields very good
results. In contrast, traditional computations based on the
nominal (and unstable) periodic solution can be consider-
ably in error.

I. INTRODUCTION

In DC-DC converters under current-mode control, the con-
troller specifies a peak inductor current in each cycle,
rather than the duty ratio. For constant-frequency opera-
tion, a switch is turned on every T seconds but is turned
off when the inductor current reaches a specified reference
level, Ir¢f. This reference level is now the primary control
variable; the duty ratio D becomes an indirectly controlled
auxiliary variable. Steady-state operation with period T
and with D > 0.5 (approximately) is impossible when I,..¢
is held constant, because this periodic solution is unsta-
ble, [1]. Throughout this paper, we examine only the case
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where I,..5 is constant, i.e. open-loop operation. The wave-
forms for D > 0.5 under this condition assume complicated
forms, corresponding either to periodic operation at some
multiple of T (subharmonic operation) or to chaotic varia-
tion from cycle to cycle, see for instance [2], [3], [4], [6]- A
stabilizing ramp is normally introduced in order to prevent
these instabilities and extend the range for stable periodic
operation beyond D > 0.5.

Although the spectral changes that are associated with
chaotic operation may provide an important motivation
for actual operation in this regime, the literature on chaos
in power electronics has tended to treat it more as an ex-
otic effect than as a feasible mode of operation. This may
explain why none of the prior work that we are aware of
has attempted, for the chaotic regime, to characterize even
the most basic property of such converters, namely the
input-output gain (which is the ratio of the average out-
put voltage to the DC input voltage). In view of this, it
is no surprise that practitioners implement measures (such
as the stabilizing ramp referred to above) to avoid chaotic
operation.

In this paper, we show how to compute the input-output
gain, and various other averages of interest, for the chaotic
regime of DC-DC converters under current-mode control
and in continuous-conduction mode. (Computation of
spectral characteristics is deferred to a future paper.) Our
approach involves recognizing and exploiting the ergodicity
of the sampled inductor current in a simplified first-order
model of the converter. What this means is that the evo-
lution of the inductor current samples is governed by a
unique “probability” density. Time averages (whose direct
determination would require tedious, costly, and unreliable
time-domain simulations) can now be replaced by ensem-
ble averages computed with respect to this density. We
demonstrate that very good results are obtained even if
the density is approximated as being uniform. In contrast,
traditional computations based on the nominal (period-T,
unstable) periodic solution can be considerably in error.
Our treatment provides convenient analytical expressions
to support design for operation in the chaotic regime, and
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Figure 1: Boost converter circuit.

thereby enables more serious evaluation of the potential
advantages of chaotic operation. Results are presented for
buck, boost, and buck-boost converters.

The paper is organized as follows. Section II introduces
the role of densities in describing the chaotic regime of a
DC-DC converter, using the boost converter as an exam-
ple. Section III continues to focus on the boost converter,
and develops our procedure (previously outlined in [6], but
without details) for calculating the output voltage of this
converter in terms of the parameters of the circuit. Com-
puter simulations of the converter circuit model, assuming
ideal components but not imposing further assumptions
(specifically not assuming that the inductor current is lin-
ear or that the output voltage has negligible ripple) have
been used to verify our results, and representative com-
parisons are presented. Sections IV and V are devoted to
similar treatments of the buck-boost and buck converters,
respectively.

II. DegscrIiBING CHAOTIC
BEHAVIOUR ViIiA DENSITIES

The boost converter analyzed in this paper is shown in
Figure 1. It is assumed that the converter is operating
in continuous-conduction mode. The switch is controlled
by clock pulses that are spaced T seconds apart. When
the switch is closed, the inductor current — driven by Vi,
— increases linearly until it reaches the specified reference
value, Ir.f, at which point the switch opens. Any clock
pulse that arrives while the switch is closed is ignored.
Once the switch has opened, the next clock pulse causes it
to close. Under the assumptions that the output voltage
Vour is essentially constant and that the switching period
is short enough for the inductor current to be essentially
piecewise linear, it has been shown in [2] that the dynamics
of the converter are well described by the following map:

Zpt1 = 1 — mody(azy) (1)

where: modi( ) denotes multiplication modulo 1 (hence
simply the extraction of the fractional part); z, = t,/T
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Figure 2: Typical segment of inductor current for chaotic
regime, o > 1.

represents the normalized time from the n-th opening of
the switch to the next closing of the switch, as marked in
Figure 2; and o is the ratio of the slope magnitudes of
the inductor current when the switch is open and closed,
respectively:

ma (Vout - VLTL)/L Vout — Vi

o= = = 2)

my Vin/ L Vi

The analysis of this equation in [7] shows that for o < 1,
which corresponds to D < 0.5, the equation has a non-
trivial stable equilibrium point, corresponding to stable
period-T' operation of the converter. For o« > 1, or
D > 0.5, the equation has no nontrivial stable equilib-
rium point or stable periodic solution, so stable operation
of the converter with period 7' or any multiple of T is not
possible (at least to the extent that the simplified model in
(1) actually describes the circuit behavior). For ¢ = 1, the
solution of the equation for most initial conditions has pe-
riod 2, which implies the converter has a solution of period
27.

Figure 2 represents a typical segment of the inductor
current variation with time for a > 1. The shaded areas of
the figure correspond to intervals when the switch is open;
these are precisely the intervals when the diode current is
non-zero, equal in value to the inductor current. Unlike in
the case of a < 1, where the diode current contains one
pulse per clock period T, for o > 1 there are some periods
with no diode current. The ratio of periods with current
and no current depends upon the value of «.

The bifurcation diagram for the map (1) is shown in
Figure 3, and makes evident the transition from period-T
behavior to chaotic operation as a increases through 1. It
can be shown, [8], that all points are visited upon iter-
ation for « > ap, where ag = (1 + v/5)/2 is the golden
mean. It has also been shown in [8], citing results from [9],
that the map (1) is ergodic, which implies the existence —
for each a — of a “probability” density f,(z) that governs
the distribution of the values of z,, in the interval [0,1]; the
density is termed invariant, because it applies for all n. A
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Figure 3: Bifurcation map for (1).

celebrated result of Birkhoff shows that the invariant den-
sity can be used to replace time averages of the quantities
of interest by ensemble averages, computed with respect to
the density, [9]. The density for the map (1) is uniform for
integer values of a (o > 1), but more generally is piecewise
constant, and can be computed in a systematic fashion. In
[8] it is shown, for example, that the density for o = ag
(the golden mean) is given by

. 1/(3 —ap) for
fau(w)f { ao/(?)—a()) fOT

Parallel results have been established in [10], but in the
broader and more powerful setting of eventually-expanding
maps, and Markov map approximations for them.

0<z<2—-ag
2—ap<z<1

(3)

III. ANALYsIS oF CHAOTIC

OPERATION OF THE BoosT
CONVERTER

To calculate the output voltage Vot (assumed essentially
constant) for @ > 1, we argue as follows. Consider the
(n +1)-st switching cycle, which is the one that commences
with the switch closing at the end of the interval marked
t, in Figure 2, and ends at the next closing of the switch.
During this cycle, the capacitor gets some charge through
the diode and loses charge through the resistor. The charge
through the diode in this cycle is just the shaded area on
the right in Figure 2. Under the assumption that Vg, is
essentially constant, this charge is given by

moT
Qp(zni1)= (Iref - %zn+1) Zn1T (4)

where ma = (Vout —Vin)/ L. The charge lost to the resistor
by the capacitor during this switching cycle is Qg(zn+1) =

pn+1VourT/ R, where p,; is the number of clock cycles of
length T contained in the (n + 1)-st switching cycle. In the
case a = 2, it is easy to see that p,y; =1if0< 2, < 0.5
and that p,+1 = 2 if 0.5 < z, < 1. Hence, for o = 2, the
net charge into the capacitor in the (n + 1)-st switching
cycle is given by

QD(‘zn—{-l) - thT/R 0<z,< 1/2
QD(:I:n+1) —vatT/R 1/2 <zpn<l1

©)
More generally, when « is an integer (and o > 1), the net
charge into the capacitor in the (n + 1)-st switching cycle
is given by

Qc(zny1) = {

Qp(znt+1) — VourT/R 0<z,<1/a
QD(.’E,-H.]) —2VoutT/R 1/a<zy <2/a
Qolentr) =
Qp(Ent1) — Vo T/R N <2, <1
(6)
For the output voltage to remain essentially constant, we
require the time-average Q¢ of Q¢ (Zn41) to be 0. Invoking
the ergodicity of (1), we can replace the time average by
an ensemble average (Qc¢), computed with respect to the
appropriate invariant density:

1
Qo) = /0 Q0 (2)fulz)de @)

In the case of integer o, the density fa(z) is uniform, so
the required calculation is easy. For this case, evaluating
the above integral and equating it to 0 yields the constraint

(1+a)?Vin,  aVinT

R 3L ®)

I'ref =

For most non-integer values of o, the determination of
fa(z) for the evaluation of (7) becomes considerably more
complicated. However, it turns out that using the con-
straint in (8) as an approximation for all o (a > 1) yields
very good results. For instance, when a = «p, we can
easily evaluate (7) using (3) and the appropriate general-
ization of (6) to this non-integer case. The resulting con-
straint is

(1 + 00)2Vin (2040 - l)vm.T
bep=—% — + AL

This result is in excellent agreement with the approximate
solution (8) for & = g, because (ao/3) &~ (20 — 1)/4.

To compute Voys for a given Ireg, we first determine o
from (8) and then substitute in (2) to get Vou:. Figure 4
shows a plot (solid line) of Vy;: in volts as a function of I
in amps, computed in this way for a particular example.
The circuit parameters are Vi, = 10 volts, R = 20Q, T' =
100us, L = 1mH and C = 500uF. In Figure 4 we also show
a plot (dotted line) of the results computed for this circuit
using an accurate second-order sampled-data model, [3],

9)
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Figure 4: V,.: in volts as a function of I in amps, for
the boost converter parameters given in the text. The solid
line corresponds to using our approximate expression (8),
while the dotted line represents the results of simulations
using the sampled-data model of [3].

which tracks samples of the inductor current and capacitor
voltage, taken every T seconds. The major discrepancy
occurs for Vi, = 20 volts. Since V;,, = 10 volts, this point
corresponds to a = 1, which is the onset of instability. For
values of o > 1.4, our approximate results are in excellent
agreement with those obtained through the sampled-data
simulation.

Table 1 shows representative results for this converter
as a function of I,.s (in amps). The second column is the
value of o computed from (8), and the third column gives
the value of V,,,; (in volts) obtained by using this value of o
in (2). The fourth column, labeled Vout,sim, shows the av-
erage output voltage obtained from simulations of the cir-
cuit using SIMULINK from MathWorks (essentially iden-
tical results are obtained in SPICE simulations as well).
Comparing the third and fourth columns, it is evident that
our approximate analysis performs well. Typical wave-
forms from the SIMULINK simulation are shown in Figure
5. Note that, despite the erratic — chaotic — appearance
of the waveforms, the converter is in continuous conduc-
tion and the output voltage is essentially constant, with
only a small ripple.

The last column in Table 1, labeled I,., f,per, Shows what
I;ef would be needed in order to obtain the indicated «
(and hence Vyyt), if the inductor current waveform were
periodic with period T'. Although the periodic solution is
unstable for the range of «’s shown in Table 1, our intent
is to see what sorts of results would be obtained if cal-
culations that are routinely done for D < 0.5 are blindly
extended to D > 0.5. Simple calculations show that

aVinT
(1+a)2L

J (14 )V,
ref,per —
R

(10)
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Figure 5: Waveforms of (a) inductor current, (b) diode
current, and (c) output voltage, obtained by simulation.
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Table 1: Boost converter comparisons.

Iref a, (8) Vout, (2) Vout,sim Iref,pe’r
4.0 1.629 26.29 26.2 3.766
5.0 1.95 29.5 29.5 4.682
6.0 224 32.41 32.5 5.594
7.0 251 35.11 35.2 6.518

It is evident from Table 1 that Iref per is a poor approxima-
tion to the true I ey. This fact indicates the need for a di-
rect analysis (even if approximate) for the chaotic regime,
and provides some justification for our efforts.

Another quantity of interest in the analysis of such con-
verters is the duty ratio. The average duty ratio (D) in the
chaotic regime can be computed in the same way as (Q¢)
was, using the invariant density. The result has been ver-
ified using simulations, and also compared with the duty
ratio of Dpe, = /(1 + ) that would be computed for the
(unstable) solution of period T. For example, when o = 2,
computation of the duty ratio for the (unstable) periodic
solution yields Dper = 2/3 = 0.667, while our calculations
with the invariant density yield (D) = 0.625. Similarly, for
a = ag, computation of the duty ratio for the (unstable)
periodic solution gives Dper = 0.618, while our calcula-
tions yield (D) = 0.602. (More generally, it turns out that
(D) < Dper throughout the chaotic regime.) In each case,
detailed simulations of the circuit, for the converter pa-
rameters above as well as for other choices of parameters,
have confirmed our results computed from the invariant
density.

IV. Buck-BoosT CONVERTER

The buck-boost converter is shown in Figure 6 (note the
reference polarity we have chosen for Vo). The analysis
of this circuit is very similar to that of the boost converter.
The inductor current waveform again has the appearance
in Figure 2, and the dynamics of the converter are still
described by the map in equation (1), but with a now
given by

_m2 _ Vow/L _ Vour

T mi Vim/L

(11)

To calculate Vo, for o > 1, we follow the same line of
reasoning as for the boost converter. The net charge into
the capacitor in the (n + 1)-st switching cycle is given by
equation (6), with o given in (11). For the output voltage
to be essentially constant, the time average -— and hence
the ensemble average — of this net charge must be 0. Using
the fact that the invariant density is uniform for integer o
(@ > 1), we obtain the following constraint for the integer

+
-~
-
]

Figure 6: Buck-boost converter circuit.

case:

a(l+a)Viy  aViT

R + 3L
The analysis is more complicated for other values of a.
However, we shall use the result in (12) as an approxima-
tion for all @ > 1. Given Ir.f, we can compute o from (12)
and Vo from (11). As a comparison, note that an exact
solution of this problem for o = «g, where the density is
given by (3), yields the constraint

I-re/ = (12)

(1 + 2110)Vin + (2a0 - I)VinT

R 4L (13)

I f—
This constraint is in very good agreement with the approx-
imate constraint (12) for oo = ap.
Table 2 shows representative results for this converter as
a function of If (in amps). The parameters of the buck-
boost circuit used for this example are V;; = 10 volts,
R =20Q, L = ImH, C = 500uF and T = 100us. The sec-
ond column lists the value of a computed from (12), and
the third column gives the value of V,y: (in volts) computed
by using this value of o in (11). The fourth column, labeled
Vout,sim, Shows the average output voltage obtained from
numerical simulations of the circuit. The last column, la-
beled Iref per, gives the Iros that would produce the listed
value of o« (and hence Vyy) if the inductor current were
periodic with period T — an unstable solution. Simple
calculations show that

a(l+ a)Vi,

aVin T
Ircf,per‘ = R

(1+a)2L (14)

Once again, we observe significant errors in the predictions
obtained by blindly extending the traditional periodic-
steady-state analysis into the chaotic regime.

V. Buck CONVERTER

The buck converter circuit is shown in Figure 7. The
analysis of this converter follows along the general lines
used for the preceding converters, but the fact that the
input/output coupling is now made through the inductor
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Table 2: Buck-boost converter comparisons.

Iref a7(12) Vouty(ll) Vout,sim Iref,per

3.667 2 20 19.9 3.333
4.5 2.28 22.8 22.9 4.087
5.5 2.586 25.86 25.7 4.997

rather than the diode requires some changes in the details
of the argument. The inductor current waveform again has
the appearance in Figure 2, and the dynamics of the con-
verter are still described by the map in equation (1), but
with o now given by

m2 Vout/ L _ Vout
my (Vzn - Vout)/L Vin ~ Vout

a= (15)

The net charge Qc(zn4+1) into the capacitor in the
(n + 1)-st switching cycle is given by an expression of
the form (6), except that Q p(z,+1) has to be replaced by
QL (zn+1), the total charge flowing through the inductor in
that cycle. Then, when we come to computing the time av-
erage and ensemble average — Q¢ and (Q¢) respectively
— of Q¢ (#n+1), what we need are the corresponding time
average and ensemble average — @, and (QL) respectively
—of QL (2nt1). Now using the fact that the time-averaged
power input of the converter must equal the time-averaged
power output, and replacing time averages by ensemble
averages, we find quite directly that

(@)= (1+)(@p) (16)

where (@ p) is the ensemble-averaged diode current. Note
that @ p(zn+1) is still given by the expression in (4), so its
ensemble average can be computed exactly as in the earlier
cases. Putting all of this together, we can evaluate (Q¢)
and set it to 0, as before, to obtain the following constraint
in the case of integer a (a > 1):

aVi CYV"LT
1+ a)R  (1+a)3L

Iyef = 17)
(

The constraint turns out to be a very good approximation

for non-integer o as well. For instance, an exact solution

of this problem for a = g using the density in (3) yields

Vin + (3 — @) VinT

1
agR a4l (18)

I f=
which is in excellent agreement with the approximate so-
lution (17) for o = .

To find Vo for a given I,.¢, we first compute o from
(17) and then solve for V,y: from (15). Table 3 shows
some representative results — under the same categories
as in Tables 1 and 2 — for the buck converter. The circuit
parameters for our example are V;, = 20 volts, R = 109,

R% V.

Figure 7: Buck converter circuit.

Table 3: Buck converter comparisons.

I‘ref 07(17) Vo'uta(15) Vout,sim I‘ref,per
1.25 1.53 12.1 12.08 1.233
1.3 1.696 12.58 12.6 1.281
1.35 1.884 13.06 13.11 1.329
1.4 2.1 13.55 13.5 1.377

T = 100ps, L = 10mH and C = 250uF. The expression
used to compute Irefper in the last column, namely the
value of Ir.o¢ that would be needed if the listed o were to
be obtained with the (unstable) solution of period T, is

aV; a Vi, T
Irefper = (I+a)R ' (1+a)2L (19)
VI. SUMMARY

This paper has demonstrated how to approach the anal-
ysis of DC-DC converters in the chaotic regime, using a
state densities approach. We have also presented a simpli-
fication that yields excellent approximations and tractable
analytical expressions. Finally, it has been established that
simple-minded extension of traditional computations from
the stable periodic regime into the chaotic regime produces
results that can be significantly in error.

Our hope is that the results in this paper can form the
basis for more serious exploration of the design implica-
tions of operation in the chaotic regime. As the waveforms
in Figure 5 make clear, the chaotic regime is not necessarily
one to be avoided; although stable period-T operation is
lost, the waveforms are still well-behaved, and the output
voltage ripple is small. A potential advantage of chaotic
operation is that the switching sprectrum is flattened (al-
though at the expense of a corresponding broadening), see
for example [5]. As noted in [12], which deals with ac-
tively randomized modulation, this spectral shaping may
be desirable in some situations. More detailed analytical
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results on the switching spectrum in chaotic operation will
be presented in a future paper.

Several important research issues remain. There are, for
example, subtleties involved in making the transition from
the simplified equation (1), with its specified value of «,
to a circuit in which, under the assumption that Vi, is
constant, we obtain an implicitly defined . Our simula-
tions, see Figure 5, have shown that the overall picture is
consistent, but more remains to be understood. A further
research issue is that of closed-loop control in the chaotic
regime.
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